### 1.2 Overview of the TRANSIENT-2000 test system

### 1.2.1 The TRANSIENT-2000 and its versions

The Tester TRANSIENT-2000 simulates transients of different interference sources. such as: indirect lightning in electronic systems, human body electrostatic discharges, switched inductance (Burst), power supply interruptions and variations. The test system TRANSIENT-2000 fulfils all requirements of the IEC basic standards IEC 61000-4-2 (ESD); 61000-4-4 (EFT); 61000-4-5 (SURGE) as option available 10/700 $\mu \mathrm{s}$ Impulse; 61000-4-11 (Interruption and Variations), and with accessories 61000-4-8 (Magnetic field $50 / 60 \mathrm{~Hz}$ ) and 61000-4-9 (Magnetic field SURGE) and 61000-4-29d dips and interruption on d.c.

If not all transient test are needed, the TRANSIENT-2000 tester is also available in various versions, with the possibility to upgrade the tester later to a full TRANSIENT-2000 test system.
The upgrade must be carried out in Switzerland at EMC PARTNER AG. The upgrade includes a verification of the Tester TRANSIENT-2000. The best occasion for an upgrade is together with a annual inspection or verification.
The TRANSIENT-2000 contains a single-phase coupling / de-coupling network, which allows a controlled superposition of the transients onto a power supply line. All transients are generated at the same EUT power output, therefore a true single port test is possible. The TESTER 2000 allows the automated switching of the coupling paths and the programming of large range of test sequences.

The tester TRANSIENT-2000 is a stand-alone equipment for automated EMC test without a PC.

### 1.2.2 Which system configuration is needed for a particular test?

| Test System And Standards |  |  | EUT ports |  |  |  | nal, Data, Lines Ports | EMC - <br> PARTNER |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | uipment der Test | In addition and me | e offer for car surements in | ing out EMC test ur company: |
| IEC Standards | Max. Values of EMCPARTNER Testers | Tester type | AC/DC | Signal Telecom | Signal | Earth | Enclosure | Calibration | Test set-up | Control via PC |
| 1000-4-2 ESD | CD* 8 kV ; AD* 15 kV | TRA-2000 | - | - | - | - | 1+2 (13) | 9,19 | 20 (21) | $14(16,23)$ |
| 1000-4-4 EFT | $4,4 \mathrm{kV}$; 1 MHz | TRA-2000 | 1 (12) | 1+3 | 1+3 | 1+3 | - | 10,19 | 20 (21) | $14(16,23)$ |
| 1000-4-5 SURGE | CWG 4,1 kV 2 kA | TRA-2000 | 1 (12) | 1+18 | 1+4 | 1+5 | 1+5 | 19 | - | $14(16,23)$ |
| 1000-4-8 a.c. MF | 160A/m, 1050A/m | TRA-2000 | - | - | - | - | $1+7+8+15$ (22) | - | 22 | $14(16,23)$ |
| 1000-4-9 Surge MF | $1600 \mathrm{~A} / \mathrm{m}$ | TRA-2000 | - | - | - |  | $1+7+8(22)$ | - | 22 | $14(16,23)$ |
| 1000-4-10 Oscil. MF | $120 \mathrm{~A} / \mathrm{m}$ | MIGOS-OM | - | - | - |  | $1+7+8(22)$ | - | 22 |  |
| $\begin{array}{\|l\|} \hline \text { 1000-4-11 DIPS } \\ \text { 1000-4-11 Variation } \\ \hline \end{array}$ | 16 A different levels <br> 5 A different levels | $\begin{aligned} & \hline \text { TRA-2000 } \\ & \text { TRA-2000 } \end{aligned}$ | $1(6,12)$ | - | - | - | - | 11,19 | - | $14(16,23)$ |
| 1000-4-12 Ring 1000-4-12 Oscillation | $\begin{aligned} & 6 \mathrm{kV} \\ & 3 \mathrm{kV}, 1 \mathrm{MHz}, 100 \mathrm{kHz} \end{aligned}$ | MIG0603IN4 MIGOS-OSI | $\begin{gathered} 1(12,24) \\ 1(24) \\ \hline \end{gathered}$ | - | - | - | - | 19 | - | $14(16,23)$ |
| 1000-4-13 Harmonics | $16 \mathrm{~A}, 230 \mathrm{~V}$ | HAR-1000 | 1 | - | - | - | - | 19 | - | 14 (16) |
| 1000-4-14 V-variation | $16 \mathrm{~A}, 230 \mathrm{~V}$ | HAR-1000 | $1(6,12)$ | - | - | - | - | 19 | - | 14 (16) |
| 1000-4-17 Ripple on d.c. | $16 \mathrm{~A}, 200 \mathrm{~V}$ d.c. | HAR-1000 | $1(6,12)$ | - | - | - | - | 19 | - | 14 (16) |
| 1000-4-16 Common Mode | 300 V a.c., 300 V d.c. | TRA-2000 | - | 1+17 | 1+17 | - | - | 19 | - | $14(16,23)$ |
| 1000-4-29 DIP on d.c. | $16 \mathrm{~A}, 110 \mathrm{~V}$ | TRA-2000 | 1 | - | - | - | - | 19 | - | $14(16,23)$ |


| $\mathbf{N}^{\circ}$ | Description / Accessories | $\mathbf{N}^{\circ}$ | Description / Accessories | $\mathbf{N}^{\circ}$ | Description / Accessories |
| :---: | :--- | :---: | :--- | :--- | :--- |
| 1 | See colon "Tester type" | 9 | Measuring Target ESD $2 \Omega$ | 17 | NW16S, CN16, CN16T |
| 2 | ESD discharge circuit, Relay, Finger | 10 | Measuring set EFT $50 \Omega / 1 \mathrm{k} \Omega$ | 18 | Coupling Kit Telecom CDNKIT1000T |
| 3 | Coupling clamp CNEFT1000 | 11 | Measuring-set DIPS (inrush current) | 19 | Certificate and Protocol |
| 4 | SURGE coupling kit CDNKIT1000 | 12 | Three phase coupling CDN2000-06-32 | 20 | Connection set |
| 5 | Test tip CN-TRA | 13 | ESD stand | 21 | Test set-up accessories |
| 6 | External Variac VAREXT-1000 (16/32A) | 14 | GENECS to TRA, HARCS-Immunity to HAR | 22 | Stand to MF1000-1 or MF1000-2 |
| 7 | Antenna for magnetic field MF1000-1 1x1m | 15 | Antenna for magnetic field MF1000-1 1x1m, 3s | 23 | Fibre Optic link |
| 8 | Antenna for magnetic field MF1000-2 1x2.6m | 16 | EUT Monitor for EUT failed control | 24 | Three phase coupling CDN2000-06-25 |

*CD = Contact Discharge *AD = Air Discharge

### 1.3 Technical data of the TRANSIENT-2000

1.3.1 Switched inductance EFT (IEC 61000-4-4)

| Voltage waveform into $50 \Omega$ : | Impulse Outpur |  | Chap 14.1.1 IEC 61000-4-4 |
| :---: | :---: | :---: | :---: |
| Risetime | 5 ns | $\pm 30 \%$ |  |
| Half time value | 50 ns | $\pm 30 \%$ |  |
| Voltage waveform into 1000 : |  |  |  |
| Risetime | 5 ns | $\pm 30 \%$ |  |
| Half time value | 100 ns | - 50 ns | $+100 \mathrm{~ns}$ |
| Adjustable voltage range | 250 V to 4400 V |  |  |
| Voltage amplitude into $50 \Omega$ | 125 V to 2000 V | $\pm 10 \%$ |  |
| Voltage amplitude into $1000 \Omega$ | 250 V to 4000 V | $\pm 20 \%$ |  |
| Source impedance | $50 \Omega$ | $\pm 10 \%$ |  |
| Spike frequency | 1 kHz up to 1 MHz |  |  |
| Maximum Spikes per seconds | 8 '000 at 1000 V |  | 1000 at 4000 V |
| Burst duration | $0,001 \mathrm{~ms}$ up to 20 ms |  |  |
| Burst repetition | 1 ms up to 1000 ms |  |  |
| Polarity | positive / negative |  |  |
| Ramps | -Voltage <br> -Spike frequency <br> -Synchronisation <br> -Burst duration |  |  |
| High voltage output | 10 nF decoupled | $\begin{aligned} & \text { max. } \\ & 450 \text { V ac } \end{aligned}$ |  |

### 1.3.2 Coupling / De-coupling Network EFT

| Maximum EUT power supply voltage | 260 V ac $50 / 60 \mathrm{~Hz}$ |  |  |
| :--- | :--- | :--- | :--- |
| Maximum allowed continuous current | 16 A |  |  |
| Spike waveform superimposed onto <br> the lines of the EUT power supply | within the tolerances as <br> above |  | Chap 14.1.1 IEC 61000-4-4 |
| damping between output and input of <br> the CDN | better 30 dB |  |  |
| Coupling paths: | L-GND; N-GND, PE- <br> GND, L+N+PE - GND <br> L+N - GND; L+PE - <br> GND; N+PE - GND |  |  |

### 1.3.3 Electrostatic discharges ESD (IEC 61000-4-2)

| Energy storage capacitance | 150 pF | $\pm 10 \%$ |  |
| :---: | :---: | :---: | :---: |
| Discharge resistance | $330 \Omega$ | $\pm 10 \%$ |  |
| Charging resistance | $54 \mathrm{M} \Omega$ |  |  |
| holding time (drop to 95\%) | better than 5 s |  |  |
| Current rise time, $2 \Omega$ load | 0,7 to 1 ns |  | See 14.1.2 <br> IEC 61000-4-2 |
| Definition of current waveform: |  |  |  |
| Current amplitude at 30 ns | 4 to 16 A | $\pm 30 \%$ |  |
| Current amplitude at 60 ns | 2 to 8 A | $\pm 30 \%$ |  |
| Voltage range „air discharge" | 2 to 15 kV | $\pm 10 \%$ |  |
| Voltage range „contact discharge" | 2 to 10 kV | $\pm 10 \%$ |  |
| First current amplitude into $2 \Omega$ „Contact discharge" | 7,5 to 30 A | $\pm 10 \%$ |  |
| Polarity | positive / negative; automatic switchover |  |  |
| Number of discharges <br> Detection of the number of discharges | -preselectable <br> -count „every pulse" <br> -count "discharge only" <br> Only the impulses whereas the voltage of the discharge capacitor tropes lower then 10\% of the charging voltage are counted. |  | 1 to 29'999 |
| Ramps | voltage amplitude changes from shot to shot, alternate polarity |  |  |
| Reporting | test sequence with the number of discharges <br> -Voltage amplitude <br> -Polarity |  |  |
| Discharge modes: | -Air discharge <br> -Contact discharge |  |  |
| Repetition of the discharges | 0.05 up to 30 s <br> Single discharge „Man" |  |  |
|  |  |  |  |

### 1.3.4 Lightning and switching actions SURGE (IEC 61000-4-5)

| Waveform at no load | Impulse output |  | See 14.1.3 |
| :---: | :---: | :---: | :---: |
| Front time | $1.2 \mu \mathrm{~s}$ | $\pm 30 \%$ |  |
| Time to half value | $50 \mu \mathrm{~s}$ | $\pm 20 \%$ |  |
| Waveform at short circuit: |  |  |  |
| Front time | $8 \mu \mathrm{~s}$ | $\pm 20 \%$ |  |
| Time to half value | $20 \mu \mathrm{~s}$ | $\pm 20 \%$ |  |
| Preselectable voltage range | 220 V to 4100 V |  |  |
| Open circuit output range | 250 V to 4000 V | $\begin{aligned} & -0 \% ; \\ & +10 \% \end{aligned}$ | - |
| Short circuit output current | 125 A to 2000 A | $\begin{aligned} & -0 \% \\ & +10 \% \\ & \hline \end{aligned}$ |  |
| Output impedance Umax / Imax | $2 \Omega$ | $\pm 0.25 \Omega$ |  |
| Polarity | positive / negative / |  |  |
| Ramps | -Voltage <br> -Polarity <br> -Synchronisation |  |  |
| High voltage output "low" | maximum voltage between „low" and earth 260 V ac |  |  |
| Time between successive shots | 3 s |  | 5s at 4000 V |

### 1.3.5 Coupling / De-coupling Network „CDN-SURGE"

| Maximum allowed voltage phase <br> neutral | 260 V ac $50 / 60 \mathrm{~Hz}$ | 16 A |  |
| :--- | :--- | :--- | :--- |
| Coupling path phase- earth | $9 \mu \mathrm{~F}+10 \Omega$ | $(\mathrm{~L}-\mathrm{PE})$ |  |
| Coupling path neutral - earth | $9 \mu \mathrm{~F}+10 \Omega$ | $(\mathrm{~N}-\mathrm{PE})$ |  |
| Coupling path phase - neutral | $18 \mu \mathrm{~F}$ | $(\mathrm{~L}-\mathrm{N})$ |  |
| Coupling modes: | L-N; L-PE; N-PE, <br> automatic coupling path <br> switching |  |  |

Attention! The CDN-SURGE 1,2 / 50; $8 / 20 \mu \mathrm{~s}$ is designed for maximum power consumption at 260V rms $50 / 60 \mathrm{~Hz}$ and a coupling capacitance of $18 \mu \mathrm{~F}$.
If using EMC PARTNER coupling de-coupling network other than, the maximum power dissipation of the TRANSIENT-2000 must be considered. Power Line voltages higher than specified can destroy the impulse
forming devices in the TRANSIENT-2000. Please contact EMC PARTNER AG or a representative before using a unknown coupling network.

### 1.3.6 Voltage interruption and Variation (IEC 61000-4-11) with internal Variac

| Voltage range | 0 to 260 V |  | EUT Power | See 4.2 |
| :---: | :---: | :---: | :---: | :---: |
| Frequency range without variac | DC up to 400 Hz |  |  | external Source |
| Frequency range with variac involved | 48 Hz to 60 Hz |  |  | external Source |
| Nominal current | 16A |  |  |  |
| Interruption with internal variac and linear load | maximum 12 A maximum 16 A |  |  | $\begin{aligned} & <5 \mathrm{~s} \\ & <300 \mathrm{~ms} \end{aligned}$ |
| Inrush current | 500 A Peak |  | $\begin{aligned} & -0 \%, \\ & +30 \% \\ & \hline \end{aligned}$ | See 14.1.4 |
| Interruption time | $50 \mu \mathrm{~s}$ to 30 s |  |  | phase angle selectable |
| Amplitude of the interruptions | continuously selectable from 0 to 100 \% |  |  | IEC: 0 \%, $40 \%$, 70 \% |
| Phase angle for turn ON and OFF of the EUT selectable | 0 to $360^{\circ}$ |  | $\pm 5^{\circ}$ |  |
| Voltage variation with the internal variac | 0 to 110 \% maximum. 5A |  | $\pm 20 \%$ | 2 s to 30000 s |
| Voltage variation with external variac | 0 to 110 \% maximum.$16 \mathrm{~A}$ |  | $\pm 20 \%$ | 2 s to 30000 s |
| Less than 1 period <br> More than one period d.c. interruption | Interruption within one period. Input as angle Interruption longer then one period. Input in ms Input in ms |  |  |  |
| Ramps | -Voltage <br> -Synchronisation angle <br> -Interruption time |  |  |  |
| Interruption for all kind of loads UT= voltage at EUT Power 1 | $\begin{array}{\|l\|} \hline \text { DIP } \\ 100 \% \end{array}$ | $\begin{array}{\|l} \% ~ U T \\ 0 \% \end{array}$ | 0 to 16 A |  |



For interruptions of 0 to $100 \%$ and $100 \%$ to $0 \%$ the internal Variac is not involved, therefore the test can be carried out up to 16 A. For interruption with UT =EUT Power 1 voltage not null, the internal variac limits the EUT power current. The maximum allowed current values are listed in the table on the next page. Please be aware that different types of loads influence the maximum current differently.

## With internal Variac:

| Types of loads: <br> switching from to |  | Variable power consumption maximum 2.6 kW at UT 230 V . With reduction of the voltage the current is also reduced. <br> Examples: Ohmic -, inductive -, capacitive -, mixed loads | Constant power consumption maximum $\mathbf{1 , 2} \mathbf{k W}$ at UT $=220 \mathrm{~V}$. With reduction of the voltage the current is increased. <br> Example: switched power supply | voltage change in \% of UT at current change 0 to 100 \% <br> UT= voltage at EUT Power 1 |
| :---: | :---: | :---: | :---: | :---: |
| UT | \% UT | current range r.m.s | current range r.m.s | \% of UT |
| 100 \% | 0 \% | 0 to 16A | 0 to 16A | 0.7 \% |
| 100\% | 80\% | 0 to 10 A | 0 to 5A | 4\% |
| 100\% | 70\% | 0 to 9 A | 0 to 6 A | 4\% |
| 100\% | 40\% | 0 to 5 A | 0 to 10 A | 5\% |

Note: all values apply for switching time at \%UT< 5 s

### 1.3.7 Interruption and Voltage Variation IEC 61000-4-11 with external Variac

| Types of loads: <br> switching from to |  | Variable power consumption maximum 3.7 kW at UT 230 V . With reduction of the voltage the current is also reduced. <br> Examples: Ohmic -, inductive -, capacitive -, mixed loads | Constant power consumption maximum $3,7 \mathrm{~kW}$ at UT $=220 \mathrm{~V}$. With reduction of the voltage the current is increased. <br> Example: switched power supply | voltage change in \% of UT at current change 0 to 100 \% <br> UT= voltage at EUT Power 1 |
| :---: | :---: | :---: | :---: | :---: |
| UT | \% UT | current range r.m.s | current range r.m.s | \% of UT |
| 100 \% | 0 \% | 0 to 16A | 0 to 16A | 0.7 \% |
| 100\% | 80\% | 0 to 12.8 A | 0 to 20A | 4\% |
| 100\% | 70\% | 0 to 11.2 A | 0 to 23 A | 4\% |
| 100\% | 40\% | 0 to 6.5 A | 0 to 40 A | 5\% |

Note: all values apply for switching time at \%UT<5 s
1.3.8 DIPS circuit in accordance with IEC 61000-4-29 for d.c. power ports.

| Voltage range d.c. | 20 to 110 V | EUT <br> Power |  |
| :--- | :--- | :--- | :--- |
| Current range | 0 up to 16 A |  |  |
| Inrush current capability at 110 V | 220 A Peak | $-0 \%$, <br> $+30 \%$ | See 6.1.1 |
| Interruption time | 1 ms up to 29999 ms |  |  |
| Rise and fall time at 100 Ohm load | between $1 \mu \mathrm{~s}$ and 50 <br> $\mu \mathrm{~s}$ |  | See 6.1 |

## IEC 61000-4-29 page 19:

The use of a generator with higher or lower voltage/current capability is allowed provided that the other specifications are preserved. The test generator steady state power/current capability shall be at least 20\% greater than the EUT power/current ratings.

### 1.3.9 Measuring circuit, measuring outputs

Monitor outputs for measuring equipment e. g. oscilloscope:

| Outputs | Relations | Tolerances | Maximum values |
| :--- | :--- | :---: | :---: |
| SURGE Voltage | 10 V equals 4000 V | $5 \%$ | 4800 V |
| SURGE Current | 10 V equals 2000 A | $5 \%$ | 2400 A |
| EUT Power Voltage | 10 V equals 400 V | $3 \%$ | 480 V |
| EUT Power Current | 10 V equals 100 A | $5 \%$ | 500 A |

Numeric measurements e.g. measuring values in the display and in the report.

| Display | Range | Tolerances |  |
| :--- | :--- | :---: | :---: |
| SURGE Voltage Peak value | 0 to 5000 V | $5 \%$ |  |
| SURGE Current Peak value | 0 to 2500 A | $5 \%$ |  |
| EUT Power Voltage (rms) | 0 to 260 V | $3 \%$ |  |
| EUT Power Current (rms) | 0 to 18 A | $3 \%$ |  |

1.3.10 Trigger Output Levels


### 1.3.11 Control

| Set-up memory | Up to 15 memory places |
| :--- | :--- |
| Test sequences | the set-ups can be linked serially |
| Ramps | automatic linear variation of one parameter e.g. voltage, frequency <br> etc. |
| Synchronisation on different power <br> line frequencies | $16,{ }^{2} / 3 ; 40 ; 50 ; 60, \mathrm{~Hz}$ |
| Impulse release | Manual or automatic |
| Failure detection on EUT | -External Input EUT failed <br> -Manual detection <br> -Selectable limit value for impulse voltage and current for SURGE |
| Safety switching | Emergency stop |
| Switch off the EMC Test and the EUT power |  |
| Control of an external variac | separate remote-control output |
| Test report | RS232 port for printer, Centronics |
| Control of external CDN | via RS 485 port |

### 1.4 Mechanical dimensions

| Tester -Type | Dimensions [mm] | Weight [kg] | Versions |
| :---: | :---: | :---: | :---: |
|  | width $\times$ depth $\times$ height |  |  |
| TRA2000 | $550 \times 600 \times 190$ | 33 | 19" 4 UH |
| TRA2000-DIPS | $550 \times 600 \times 190$ | 20 | 19" 4 UH |
| TRA2000-EFT-ESD | $550 \times 600 \times 190$ | 20 | 19" 4 UH |
| TRA2000-DIPS-SURGE | $550 \times 600 \times 190$ | 30 | 19" 4 UH |
| TRA2000-EFT-ESD-DIPS | $550 \times 600 \times 190$ | 32 | 19" 4 UH |
| TRA2000-EFT-ESD-SURGE | $550 \times 600 \times 190$ | 27 | 19" 4 UH |
| TRA2000-SURGE | $550 \times 600 \times 190$ | 22.5 | 19" 4 UH |

### 1.5 Power Consumption

The power line input is located on the rear side of the TRANSIENT-2000.

| Voltage between phase and neutral | $\begin{aligned} & 230 \mathrm{~V}(50 \mathrm{~Hz}) \\ & 115 \mathrm{~V}(60 \mathrm{~Hz}) \end{aligned}$ | $\begin{aligned} & \pm 10 \% \\ & \pm 10 \% \end{aligned}$ |
| :---: | :---: | :---: |
| Power consumption | Operation mode < 400 VA <br> Standby < 50 VA <br> Power OFF < 5 VA | $\begin{aligned} & (230 \mathrm{~V}, 50 \mathrm{~Hz}) \\ & (115 \mathrm{~V}, 60 \mathrm{~Hz}) \end{aligned}$ |

The tester TRANSIENT-2000 is shipped for a line voltage 230 or 115 V .
Following power cords can be ordered:
Europe (CEE-7/VII ) UK (BS-1363) Switzerland (SEV Type 12) USA (NEMA5-15P )

